Абстракт
The paper presents the results of a comparison of water turbidity and suspended particulate matter concentration (SPM) obtained from quasi-synchronous in situ and satellite remote-sensing data. Field measurements from a small boat were performed in April and May 2019, in the northeastern part of the Black Sea, in the mouth area of the Mzymta River. The measuring instruments and methods included a turbidity sensor mounted on a CTD (Conductivity, Temperature, Depth), probe, a portable turbidimeter, water sampling for further laboratory analysis and collecting meteorological information from boat and ground-based weather stations. Remote-sensing methods included turbidity and SPM estimation using the C2RCC (Case 2 Regional Coast Color) and Atmospheric correction for OLI 'lite' (ACOLITE) ACOLITE processors that were run on Landsat-8 Operational Land Imager (OLI) and Sentinel-2A/2B Multispectral Instrument (MSI) satellite data. The highest correlation between the satellite SPM and the water sampling SPM for the study area in conditions of spring flooding was achieved using C2RCC, but only for measurements undertaken almost synchronously with satellite imaging because of the high mobility of the Mzymta plume. Within the few hours when all the stations were completed, its boundary could shift considerably. The ACOLITE algorithms overestimated by 1.5 times the water sampling SPM in the low value range up to 15 g/m(3). For SPM over 20-25 g/m(3), a high correlation was observed both with the in situ measurements and the C2RCC results. It was demonstrated that quantitative turbidity and SPM values retrieved from Landsat-8 OLI and Sentinel-2A/2B MSI data can adequately reflect the real situation even using standard retrieval algorithms, not regional ones, provided the best suited algorithm is selected for the study region.
Ключевые слова
river plume, turbidity, suspended particulate matter, ocean color data, satellite remote sensing, in situ measurements, C2RCC, ACOLITE, Landsat-8 OLI, Sentinel-2 MSI, Mzymta River, Black Sea