Войти
On-line data access interface for vegetation database at the Tuapkhat massif' cliff  id статьи: 707
Тип публикации
материалы конференции
Язык
En
Журнал
Proceedings of SPIE - The International Society for Optical Engineering

ISSN:0277786X
Год
2020
Выходные данные
том 11524
выпуск
страницы 1152412
Авторы
Krylenko, S.1
Lukinykh, A.1
EDN
Абстракт
The present work deals with the systematic field observation, archiving, accessing and visualization of the vegetation land cover data in the abrasive coastal zone of the Krasnodar region in the Black Sea. Particularly, the field observation of the species composition of the higher vascular plants was carried out at the coastal area of the Tuapkhat massif, a cliff of 80-100 meters high. The field observations were divided into 112 sites taking into account the local geomorphologic features. After the analyzes of the obtained data from the field observations of the vascular plants, a dedicated on line Web GIS database was developed. At present, the online database consists of two tables, the first one includes the coordinates of the area covered by the different types of the vegetation plant, their quantities in each area and their statistical characteristics. The second one includes the description of each type of the vegetation plant with their characteristics and the corresponding images of each type of plant. The User Interface (UI) was developed using jQuery and mapBox GL, in order to provide online access to the vegetation plants characteristics in the above areas of interest. The UI allows the user to access and visualize a number of different types of data concerning the land vegetation plant, covering each area under study, i.e. species, family, life form, fruits, relation to moisture, relation to light, relation to substrate, Red Book, photo, etc. © 2020 SPIE.
Ключевые слова
Coastal zones, Data visualization, Database systems, Remote sensing, User interfaces
Дата занесения
2020-09-29 15:05:38
Scopus
Статус есть
Квартиль --
WoS
Статус нет
Квартиль --
РИНЦ
Статус нет
Импакт-фактор --
количество баллов за публикацию
2
количество баллов каждому автору
0.67
история начисления баллов за квартал:
Финансирование: