Remote sensing and modeling of the evolution of suspended matter in the Sea of Azov  id статьи: 456
Тип публикации
материалы конференции
Журнал
Proceedings of SPIE - the International Society for Optical Engineering
ISSN:0277-786X
eSSN:1996-756X
Выходные данные
том
10833
выпуск
страницы
UNSP 108334G
Абстракт
This paper provides a synergetic approach between numerical modeling and remote sensing of bio-optical water properties. The work demonstrates that appropriate data-assimilation schemes make numerical modeling a suitable and
reliable tool for filling the gaps arising due to satellite imagery unavailability and/or cloud covering. In this research we apply the Princeton Ocean Model to the Sea of Azov, assimilating bio-optical indexes (index34 and
bbp(555)) from MODIS L2 products. These data identify the presence of suspended matter (mineral suspended matter from river discharges or resuspending as a result of a strong wind), and suspended matter of biological origin.
The ad hoc assimilation/correction scheme allows for prediction (and reanalysis) of transport and diffusion of the bio-optical tracers. Results focus on the ability of the method to provide spatial maps that overcome the general
issues related to Ocean Color imagery (e. g., cloud cover) and on the comparison between the assimilating and the non-assimilating runs. Methods of joined information analysis are discussed and the quality of model forecasts is
estimated depending on the intervals of the satellite data assimilation. Hydrodynamic modeling of the Sea of Azov was carried out for the period of 2013-2014 applying meteorological data of the regional weather forecasting
system SKIRON/Eta. The analysis of data coherence helps to detect negative changes to the sea waters, predict them and forecast typical areas and territories subject to anthropogenic impact. The successive data-assimilation
algorithm is proved to improve the forecast of suspended matter transfer.
Ключевые слова
SEA OF AZOV, EVOLUTION OF SUSPENDED MATTER, HYDRODYNAMIC MODEL, OCEAN COLOR DATA, MODIS, DATA-ASSIMILATION
Дата занесения
2018-12-12 15:49:00
количество баллов за публикацию
2
количество баллов каждому автору
1
история начисления баллов за квартал:
Финансирование:
0827-2018-0002Развитие методов оперативной океанологии на основе междисциплинарных исследований процессов формирования и эволюции морской среды и математического моделирования спривлечением данных дистанционных и контактных измерений17-05-00113