Тип публикации
статья в журнале
Журнал
Izvestiya - Atmospheric and Ocean Physics
ISSN:0001-4338
eSSN:1555-628X
Выходные данные
том
54
выпуск
2
страницы
201-205
Абстракт
This paper presents a general solution of shallow-water equations on the f-plane. The solution describes the generation of inertial oscillations by wind-pulse
forcing over the background of currents arbitrarily changing in time and space in a homogeneous fluid. It is shown that the existence of such a complete solution of
shallow-water equations on the f-plane is related to their invariance with respect to the generalized Galilean transformations. Examples of velocity hodographs of
inertial oscillations developing over the background of a narrow jet are presented which explain the diversity in their forms.
Ключевые слова
SHALLOW-WATER EQUATIONS, INERTIAL OSCILLATIONS, GALILEAN TRANSFORMATION
Дата занесения
2018-12-12 15:49:00