Войти
Statistical modeling of the sea surface in the presence of abnormal waves(Conference Paper)  id статьи: 2715
Тип публикации
материалы конференции
Язык
En
Журнал
E3S Web of Conferences. 2023 International Scientific and Practical Conference on Environmental Risks and Safety in Mechanical Engineering, ERSME 2023; Rostov-on-Don; Russian Federation; 1 March 2023 до 3 March 2023; Код 187720

ISSN:25550403
Год
2023
Выходные данные
том 376
выпуск
страницы № 03021
EDN
Абстракт
A wide range of fundamental and applied problems requires a detailed description of the statistics of abnormal sea waves (freak waves or rouge waves). These waves are characterized not only by a change in ener-gy, but also by strong nonlinearity, leading to extreme values of the higher cumulants. The possibilities and limitations of modeling the probability density function (PDF) of sea surface elevations by a two-component Gaussian mixture at extreme values of skewness and excess kurtosis are analyzed. The parameters of a two-component Gaussian mixture are calcu-lated from known values of statistical moments. Model PDFs in the form of a two-component Gaussian mixture are compared with PDFs based on direct wave measurement data, and also compared with the known Gram-Charlier distribution. It is shown that with positive values of the excess kurtosis, the PDF in the form of a two-component Gaussian mixture can be constructed at the limit values of the skewness and excess kurtosis ob-tained in different regions of the World Ocean. With large negative values of the kurtosis, the shape of the probability density function is strongly dis-torted, which indicates the limit of applicability of a two-component Gaussian mixture to the description of such situations. © The Authors, published by EDP Sciences.
Ключевые слова
Elevation Distribution, Sea Surface, Two-Component Gaussian Mixture
Дата занесения
2023-05-05 14:21:01
Scopus
Статус есть
Квартиль --
WoS
Статус нет
Квартиль --
РИНЦ
Статус нет
Импакт-фактор --
количество баллов за публикацию
2
количество баллов каждому автору
1
история начисления баллов за квартал:
Финансирование: